skip to main content


Search for: All records

Creators/Authors contains: "Lee, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As lithium (Li)‐ion batteries expand their applications, operating over a wide temperature range becomes increasingly important. However, the low‐temperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions (Li+). Here, zinc oxide (ZnO) nanoparticles are incorporated into the expanded graphite to improve Li+diffusion kinetics, resulting in a significant improvement in low‐temperature performance. The ZnO–embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structure‐charge storage mechanism‐performance relationship with a focus on low‐temperature applications. Electrochemical analysis reveals that the ZnO–embedded expanded graphite anode with nano‐sized ZnO maintains a large portion of the diffusion‐controlled charge storage mechanism at an ultra‐low temperature of −50 °C. Due to this significantly enhanced Li+diffusion rate, a full cell with the ZnO–embedded expanded graphite anode and a LiNi0.88Co0.09Al0.03O2cathode delivers high capacities of 176 mAh g−1at 20 °C and 86 mAh g−1at −50 °C at a high rate of 1 C. The outstanding low‐temperature performance of the composite anode by improving the Li+diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low‐temperature Li‐ion battery operation.

     
    more » « less
  2. Metal-free carbon materials have emerged as cost-effective and high-performance catalysts for the production of hydrogen peroxide (H 2 O 2 ) through the two-electron oxygen reduction reaction (ORR). Here, we show that 3D crumpled graphene with controlled oxygen and defect configurations significantly improves the electrocatalytic production of H 2 O 2 . The crumpled graphene electrocatalyst with optimal defect structures and oxygen functional groups exhibits outstanding H 2 O 2 selectivity of 92–100% in a wide potential window of 0.05–0.7 V vs. reversible hydrogen electrode (RHE) and a high mass activity of 158 A g −1 at 0.65 V vs. RHE in alkaline media. In addition, the crumpled graphene catalyst showed an excellent H 2 O 2 production rate of 473.9 mmol gcat −1 h −1 and stability over 46 h at 0.4 V vs. RHE. Moreover, density functional theory calculations revealed the role of the functional groups and defect sites in the two-electron ORR pathway through the scaling relation between OOH and O adsorption strengths. These results establish a structure-mechanism-performance relationship of functionalized carbon catalysts for the effective production of H 2 O 2 . 
    more » « less
  3. Tanentzap, Andrew J. (Ed.)
    Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations. 
    more » « less
  4. As more people turn to discretionary online tools to learn new skills such as computer programming, exploring how to better support a wide range of learners is becoming increasingly essential to train the next generation of highly skilled technology workers. In our prior work, users with high learner autonomy complained that most online resources they used to learn more programming did not provide them with the flexibility they preferred to navigate through learning materials, locking them into a set sequence of topics/concepts. To explore this, we implemented a level-jumping feature into an online educational programming game. We tested it with 350 new users, tracking their progress through the game for 7 days each. We found that those with high learner autonomy did use the level jumping feature more than those with low learner autonomy. We also found that males were more likely to use this new feature, regardless of learner autonomy level, compared to their female counterparts. Finally, we found that those with low learner autonomy ultimately completed more levels than their high autonomy counterparts, and that this was particularly true of female learners (who completed the most levels overall). Based on these findings, we believe that autonomous-supportive features such as flexible navigation may be beneficial to all users of online educational tools, and that encouraging its use by a wider group of users (particularly females), may increase positive effects. 
    more » « less
  5. Abstract

    Solid‐state lithium (Li) metal batteries (LMBs) have been developed as a promising replacement for conventional Li‐ion batteries due to their potential for higher energy. However, the current solid‐state electrolytes used in LMBs have limitations regarding mechanical and electrochemical properties and interfacial stability. Here, a fluorine (F)‐containing solid polymer electrolyte (SPE) having a bi‐continuous structure of F‐containing elastomers and plastic crystals is reported. The trifluoroethyl acrylate‐based SPE (T‐SPE) exhibits high ionic conductivity over 10−3 S cm−1, superior mechanical elasticity, and robust LiF‐rich interphases at both the Li metal anode and the LiNi0.83Mn0.06Co0.11O2cathode. Full cells with thin T‐SPEs and low negative/positive capacity ratios below 0.5 at the high‐operating voltage of 4.5 V demonstrate a high specific energy of 538 Wh kganode+cathode+electrolyte−1and maintain 393 Wh kg−1at a high specific power of 804 W kganode+cathode+electrolyte−1. The F‐containing phase‐separated SPE system provides a powerful strategy for achieving high‐energy and ‐power solid‐state LMBs.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Traditional challenges of poor cycling stability and low Coulombic efficiency in Zinc (Zn) metal anodes have limited their practical application. To overcome these issues, this work introduces a single metal‐atom design featuring atomically dispersed single copper (Cu) atoms on 3D nitrogen (N) and oxygen (O) co‐doped porous carbon (CuNOC) as a highly reversible Zn host. The CuNOC structure provides highly active sites for initial Zn nucleation and further promotes uniform Zn deposition. The 3D porous architecture further mitigates the volume changes during the cycle with homogeneous Zn2+flux. Consequently, CuNOC demonstrates exceptional reversibility in Zn plating/stripping processes over 1000 cycles at 2 and 5 mA cm−2with a fixed capacity of 1 mAh cm−2, while achieving stable operation and low voltage hysteresis over 700 h at 5 mA cm−2and 5 mAh cm−2. Furthermore, density functional theory calculations show that co‐doping N and O on porous carbon with atomically dispersed single Cu atoms creates an efficient zincophilic site for stable Zn nucleation. A full cell with the CuNOC host anode and high loading V2O5cathode exhibits outstanding rate‐capability up to 5 A g−1and a stable cycle life over 400 cycles at 0.5 A g−1.

     
    more » « less
  8. People often learn programming in face-to-face courses or online tutorials. Interactive computer tutors---systems that provide learning content interactively---are becoming more common in online tools such as those teaching computer programming. Studies have shown that teachers, interactive computer tutors, and the combination of both are efficient and effective in teaching programming. However, there is limited understanding of the comparative perspectives of learners learning from these two different sources. We conducted an exploratory study using semi-structured interviews and recruited 20 participants with programming experience from both teachers and interactive computer tutors. Speaking with our participants, we surfaced factors that learners like and dislike from the two learning resources and discussed the strengths and weaknesses between the two. Based on our findings, we discuss implications for designs that programming educators and interactive computer tutor developers can use to improve their teaching effectiveness. 
    more » « less